
Secure Data Retrieval on the Cloud
Homomorphic Encryption meets Coresets

Adi Akavia1, Dan Feldman2 and Hayim Shaul3

1 Haifa University, adi.akavia@gmail.com
2 Haifa University, dan.feldman@gmail.com
3 Haifa University hayim.shaul@gmail.com

Abstract. Secure Report is the problem of retrieving from a database table (e.g. on
the cloud) all records matching specified attributes, as in SQL SELECT queries, but
where the query and possibly the database are encrypted. Here, only the client has
the secret key, but still the server (e.g. cloud owner) can compute and return the
encrypted result. Secure report is theoretically possible with Fully Homomorphic
Encryption (FHE). However, the current state-of-the-art solutions are realized by
a polynomial of degree that is at least linear in the number m of records, which is
too slow in practice even for very small databases. Nevertheless, in this work we
present the first algorithm for secure report that is realized by a polynomial of degree
polynomial in log m, as well as the first implementation of secure (FHE) report.
This is by suggesting a novel paradigm that forges a link between cryptography and
modern data summarization techniques known as core-sets, and sketches in particular.
The key idea is to compute only a core-set of the desired report. Since the core-set
is small, the client can quickly decode the desired report that the server computes
after decrypting its core-set. We implemented our main reporting system including
all its sub-routines in an open source library. This is the first implemented system
that can answer such database queries under the strong secure notion of FHE. As
our analysis promises, the experimental results show that we can run secure report
queries on billions records compared to few thousands in previous FHE papers. We
hope that our results and open code would lead to the first FHE database engine in
the near future.
Keywords: FHE · Search

1 Introduction
Storage and computation have become a commodity with many organizations and indi-
viduals (client) outsourcing storage and computation to large third-party systems often
called “the cloud” (server). Usually this requires the client to reveal its private records to
the server so that the server would be able to run the computations for the client. With
e-mail, medical, financial and other personal information transferring to the cloud, it is
paramount to guarantee privacy on top of data availability while keeping the correctness
of the computations.

Fully Homomorphic Encryption (FHE) [56, 33, 34] is an encryption scheme that
facilitates secure outsourcing of computation due to its special property of enabling
computing on encrypted data; see a survey in [42]. Specifically, FHE allows computing any
algorithm on encrypted input (ciphertexts), with no decryption or access to the secret key
that would compromise secrecy, yet succeeding in returning the encryption of the desired
outcome.

Secure outsourcing of computation using FHE is conceptually simple: the client sends
the ciphertext JxK encrypting the input x and receives the ciphertext JyK encrypting the

mailto:adi.akavia@gmail.com
mailto:dan.feldman@gmail.com
mailto:hayim.shaul@gmail.com

2 Secure Data Retrieval on the Cloud

output y = f(x), where the computation is done on the server’s side requiring no further
interaction with the client. This gives a single round protocol and with low communication;
specifically the communication complexity is proportional only to the sizes of the input
and output ciphertexts (in contrast to communication proportional to the running time
of computing f() when using prior secure multi-party computation (MPC) techniques
[62, 37]). The semantic security of the underlying FHE encryption ensures that the server
learns no new information on the plaintext input and output from seeing and processing
the ciphertexts.

A main challenge for designing algorithms that run on data encrypted with fully
(or leveled) homomorphic encryption (FHE) is to present their computation as a low
degree polynomial f(), so that on inputs x the algorithm’s output is f(x) (see examples
in [52, 39, 49, 64, 17, 51, 30]). Otherwise, a naive conversion resulting in a high degree
polynomial f() would typically be highly impractical for the current state-of-the-art FHE
implementations, where running time is rapidly growing with degree and the multiplicative
depth of the corresponding circuit.

1.1 Secure Report Problem Statement
Secure report using FHE is a variant of secure search that has been a leading example
for FHE applications since Gentry’s breakthrough result construction the first FHE
candidate [33]. We consider the secure report problem of retrieving from an unsorted data
array = (x1, . . . , xm) all pairs

I = { (i, xi) | i ∈ {1, . . . ,m} , xi = `} (1)

of items matching a given lookup value ` where both input and output are encrypted FHE.
In this example, we consider the matching criteria being the equality test. More generally,
we consider a criteria given by a function isMatch(xi, `) which determines whether xi
matches the query `. See discussion below. We remark that in the context of secure
retrieval from a database, we think of array as the database table (or a specific column),
and ` the query.

Our complexity goals are different for the server and for the client. Since the server
evaluates a polynomial using FHE operations, our goal is to minimize its degree. The
client, on the other hand runs a Turing machine and our goal is to minimize its running
time. In addition, we aim for a protocol with as little communication as possible.

In the context of secure outsourcing, we focus on protocols with low communication
complexity, where the size of the communication is proportional to the size of the input
(the query) and the output. Here we assume array is pre-loaded to the server and not a
part of the input.

Definition 1 (Secure Report). The server holds an unsorted array of encrypted values
(previously uploaded to the server, and where the server has no access to the secret
decryption key):

JarrayK = (Jx1K, . . . , JxmK)

(here and throughout this work, JmsgK denotes the ciphertext encrypting message msg; the
encryption can be any fully, or leveled, homomorphic encryption (FHE) scheme, e.g. [8]).
The client sends to the server an encrypted lookup value J`K. The server returns to the
client a set of encrypted indices, value pairs

JyK = {(Ji1K, Jxi1K), (Ji2K, Jxi2K), . . .}

satisfying the condition:

isMatch(xi, `) = 1, for i = i1, i2, . . .

Adi Akavia, Dan Feldman and Hayim Shaul 3

for isMatch() a predicate specifying the search condition (see discussion below on using
generic predicates). More generally, y may be a value (sketch) from which the client can
compute the set {(i1, xi1), . . .} (decode).

We say the client / server / protocol is efficient if the following holds:

• The client is efficient if its running time is polynomial in the time to compute |`|
encryptions and |I| logm decryptions of the underlying FHE (for |`| = logm+ |xi|
the bit representation length of the input and |I| is size of the output as defined in
1).

• The server is efficient if the polynomial f(JarrayK, J`K) it evaluates to obtain JyK is of
degree polynomial in logm and the degree of isMatch(), and of size (i.e., the overall
number of addition and multiplication operations for computing f) polynomial in n
and the size of isMatch.

• The protocol is efficient if both client and server are efficient and the communication
is of size proportional to the size of the input, |`|, and the output, |I| logm.

We call the client / server / protocol inefficient otherwise.

Generic isMatch() predicate. The predicate isMatch() in Definition 1 is a generic
predicate that can be instantiated to any desired functionality (with complexity affected
accordingly, see Theorem 1). Moreover, a concise specification of isMatch() can typ-
ically be used, e.g., by the client providing the function’s name. For example, most
generally, isMatch() can be a universal circuit and ` a full specification of the predicate
defining the matching values. Alternatively, giving a more concrete instantiation, we
can extend the search query to provide the name for a particular isMatch() circuit to
be used, chosen from a commonly known set of options (for example, equality operator,
conjunction/disjunction query, range query, similarity condition, and so forth). Even
more concretely, we can fix a particular predicate in advance, say, the equality condition
isMatch(xi, `) = 1 if-and-only-if xi = `. Looking ahead, our experiments are for the latter
case; nonetheless, our results are general and apply to any generic isMatch() condition
(see Theorem 1).

A toolbox of concrete instantiations of isMatch predicate on FHE encrypted data has
been provided by prior works [63, 18, 50, 16, 47, 59, 48], including for example efficient
implementations for computing Hamming and edit distances. These works focus on
efficiently computing the isMatch predicate given the two values xi and `. This is then
employed to either give a YES/NO answer on whether a match exists in the data array (but
without returning the matching record or its index), or returning the length n indicator
vector χ = (isMatch(x1, `), . . . , isMatch(xm, `)) indicating for each record xi whether
or not it is a match to the lookup value `. In this work we focus on the complementary
problem of retrieving the set {i1, i2, . . .}, while using as a black-box the provided isMatch
criterion.
Threat Model. The functionality that our protocols implement has client’s input
(array, `); client’s output the retrieved pairs {(i1, x1), . . .}; and the server has no input or
output beyond the shared parameters, including most notably, the number of data records,
the sizes of records and lookup values and the size of the output. In Section 3.1.2 we
discuss how the size of the output can be hidden from the server if we allow inefficient
communication.

The adversaries we address are computationally-bounded semi-honest adversaries
controlling the server. Namely, the adversary follows the protocol, but may try to learn
additional information. We point out that there is no need to consider adversaries
controlling the client because the server has no input/output.

Our security requirement is that the adversary learns no information from participating
in the protocol beyond what is explicitly leaked in the shared parameters. In particular, if

4 Secure Data Retrieval on the Cloud

the client issues the protocols with one of two adversarially-chosen equal size lookup values
(similarly, data arrays), the adversary controlling the server cannot distinguish between
them. Looking ahead, security follows immediately from the semantic security of the FHE
scheme.
Applications of secure report on FHE encrypted data are abundant in the context
of secure outsourcing of computation to an untrusted party (“the cloud”/ the server),
examples including:

• Secure retrieval from a database

• Secure search in images corpus’ tags

• Secure search in text documents

• Secure search in genomic data

In all applications, the lookup value and data (database, images/tags, text documents,
genomic data) are encrypted by the client prior to being sent to the server, to ensure their
secrecy.

The most relevant applications arise in settings where data pre-sorting or pre-indexing is
infeasible, and linear scan of the data is used regardless of security.1 These are particularly
appealing scenarios due to known lower bounds necessitating a linear scan for securely
searching on FHE encrypted data. Such applications arise for example in settings with:

• A-priori unknown matching criterion, as in ad-hoc SQL queries and our generic
isMatch predicate, where indexing is impossible;

• Versatile matching criteria requiring indexes of size exponential in the number of
attributes, as in range queries on high dimensional data;

• Streaming data with each element discarded by the client immediately after being
encrypted and uploaded to the server, making pre-sorting the entire clear-text data
impossible;

• Low capacity client that is too weak to store/sort the clear-text data, as in Internet-
of-Things (IoT) devices;

• Fragmented data uploaded to the server from multiple distinct clients (e.g., agents/users/devices)
with no single entity that holds and can pre-sort the entire clear-text data.

Our main motivation in this paper is to answer affirmatively the following question: Is
there an efficient secure report protocol?

1.2 Related Works
Secure search has been extensively studied employing a variety of cryptographic tools
leading to solutions with versatile properties.
Most relevant scenario: Secure search on FHE encrypted data. The scenario
most relevant to our settings is secure search on FHE encrypted data [34], when focusing on
the single server settings and on protocols with a single-round communication of bandwidth
growing only with the size of the encrypted input and output. We note that a linear scan
of the data on the server’s side is necessary for those settings.

Private Information Retrieval (PIR) [20] constructions for these settings appeared early
on [33, 9, 29]. PIR allows a client to retrieve data from a server while hiding both the

1Note that securely sorting an encrypted array is believed to be harder than secure report; furthermore,
in-order insertion to an encrypted array seems to require secure search as a prerequisite.

Adi Akavia, Dan Feldman and Hayim Shaul 5

Figure 1: Overview of the suggested system for reporting the indices I = {2, 4, 5} of the
lookup value ` = 5 in the array (1, 5, 3, 5, 5, 4, 2). Green and blue titles correspond to
algorithms that run on the client’s and server’s side, respectively. The rightmost boxes
represent encrypted saved versions of the array. After the client calls Report on the
right, a version is computed from the shared memory (top right) to each of the few ring
values (only q = 5 is shown). IsMatch (bottom right) contains binary results for each
ring. The client computes the number |I| of occurrences (bottom left) of ` in the array,
by applying the CRT-Coreset on the Count results that are computed by the server.
It then computes the closest power of 2 for |I| (i.e., s∗ = 4), decrypts the corresponding
sketched vector (ys = 4), and ignores the other sketches. The client then compute I
efficiently from ys. Each sketch vector is computed by the server using CRT-Coreset
which computes, for every ring’s size q, its ReportCoreset (in the middle) that uses
IsMatch = array − (`, · · · , `) for q (bottom right).

client’s query, the retrieved data item, and the query and access patterns. The query here
is typically the address i ∈ [m], nevertheless, the above constructions are easily extended
for retrieving encrypted keywords provided the keyword is uniquely identifies at most a
single data item (unique identifier constraint). This is related to PIR-by-keywords [19], but
unlike the latter can address both the case of plaintext and encrypted data items, provided
uniqueness holds. For settings where the data is not encrypted, indexing can be used to
enforce uniqueness (however, with considerable time and memory overhead) [12, 57].

Secure search on encrypted data, eliminating the aforementioned uniqueness constraint,
was recently achieved [2]. In this work both data and query are encrypted, and the
protocol hides all the following: data items, query, and query and access patterns. Lack of

6 Secure Data Retrieval on the Cloud

uniqueness necessitates specifying which matching item to retrieve. In [2] the retrieved
item is the first match; whereas retrieving subsequent items requires further interaction,
one-round for each retrieved item.
Other scenarios: relaxed settings. Numerous other related works on secure search
are relevant, if relaxing the above settings to allow, for example, k > 1 servers, r > 1
rounds, communication bandwidth growing with database size m or with complexity of
the computed functionality, or information leakage on query and access pattern, etc.

When allowing k > 2 non-colluding servers, fast private queries on public data systems
were presented in [5, 60].

When allowing r > 1 rounds, logm communication overhead, and client maintaining
and updating state – Oblivious RAM (ORAM) [36] enable hiding data access patterns
with sub-linear server time (breaking the linear scan barrier of our settings).

When allowing communication bandwidth to grow with the time to compute the search
functionality, classical “pre-FHE” secure two-party computation (2PC) techniques can be
employed, such as garbled circuits and secret sharing [62, 38].

When allowing information leakage, as in leaking access and query patterns or revealing
order, searchable and structured encryption (SE and STE) [58, 13] allow for highly efficient
construction, achieving approaching plaintext search time; yet, with questionable security
guarantee.

Table 1: Comparison to related work for securely reporting lookup records in a database
column as in Definitions 2. We compare only protocols that have efficient communication
complexity as defined in Definition 1, so for example, for PIR that means only a constant
number of elements can be retrieved.

Algorithm and Papers Efficient Efficient Multiple Returns Returns Provably Records
Client Server Matches All Matches Records Secure Per Min.

Searchable Encryption [6, 58] X X X X X × 109

PIR [9, 29, 12, 57] X × × × X X 106

Secure Pattern Matching × X X × X X 103

[63, 18, 50, 16, 59, 48]
PSI [14] X X × × × X 106

Secure Search [2] X X × × X X 106

This paper: Direct method X × X X X X 103

This paper: CHELib X X X X X X 109

1.3 Our Contribution

The main goal of this paper is to introduce a novel paradigm, called coresets for
homomorphic encryption (CHE), that forges a link between data summarization techniques
(known as core-sets or sketches) and cryptography. It enabled us to reduce dramatically the
theoretical guarantees for both the degree and communication by removing the dependency
of the polynomial in the database size. An overview of the specific example application of
this paper is shown in Fig. 1.

While it is not clear if FHE versions exist for many classic tasks, such as search and
report over an array, our paradigm suggests instead to return a coreset for these problems.
Our technique was already used to solve the secure search problems (where the output of
the report is too large) in [2], and we expect it to be used for solving many other problems
in the future and turns FHE into more practical paradigm.

To this end, we also provide experimental results with corresponding open C++ library
code showing that our new algorithms that are based on this paradigm, can run secure

Adi Akavia, Dan Feldman and Hayim Shaul 7

computation on billions of database records compared to hundred-thousands entries via
the prior algorithm. Furthermore, as shown by both our analysis and experiments, this
size grows near-linearly with the number of machines on the cloud.
The second goal of this paper is to introduce practical yet simple analysis and empirical
tools for the applied crypto community and software engineers. To this end, this paper
assumes no background in cryptography. Readers that wish to skip the proofs can still
learn the pseudo code in this paper or evaluate the companion open code library [53].

More specifically, we suggest the following contributions:

1. New paradigm: coresets for homomorphic encryption (CHE) which proves that
techniques that are traditionally used for data summarization, can be used to speed
up the running time of secure database queries toward practical homomorphic
encryption with both provable and empirical guarantees for their performance. See
Section 1.4.

2. Example coresets to demonstrate our paradigm. The first CHE is called a Report
Coreset since it is the main tool of our report application below. It combines ideas
from Group Testing [31] and Sketch Matrices to allow the secure compression of
large sparse vectors (the desired indices) via a low-degree polynomial, such as sketch
matrix which are linear operators. See Sections 3 and 4. The second CHE is called
CRT-Coreset since its goal is to allow the usage of the Chinese Remainder Theorem
on the output.

3. Example application to demonstrate our coresets. We provide the first polynomial-
time secure algorithms for answering database report queries of the form “which
records contains a specific lookup value”.

4. Experimental results. We implemented our algorithms and turned them into a
secure database system, with preliminary experimental results. As expected by our
analysis, we can now answer report queries on database of few billion entries in few
minutes on a single machine, instead of millions taking roughly a day with the prior
state-of-the-art. See Section 5.

5. Open Source Library of Coresets for Homomorphic Encryption (CHELIB) based on
HElib [41] is provided for the community, to reproduce our experiments, to extend
our results for real-world applications, and for practitioners at industry or academy
that wish to use these results for their future papers or products. See [3].

We hope that our algorithms and software library will not only be extended to a general
secure SQL open library in the near future by future papers, but also forge a link between
the cryptography and data summarization experts.

1.4 New Paradigm: Coresets for Homomorphic Encryption (CHE)

Coreset is a data summarization C of a set P of items (e.g. points, vectors or database
records) with respect to a set Q of queries (e.g. models, shapes, classifiers, points, lines)
and a loss function f , such that f(P, q) is approximately the same as f(C, q) for every
query q ∈ Q. The goal is to have provable bounds for (i) the size of C (say, 1/ε), (ii) the
approximation error (say, ε ∈ (0, 1)) and (iii) construction time of C given (P,Q, f). We
can then run (possibly inefficient) existing algorithms and heuristics on the small coreset
C, to obtain provably approximated solution for the optimal query (with respect to f) of
the original data.
Sketches are a special type of coresets, where given an m× d matrix P and a “fat", s×m
matrix As,m, with s � m, the result C = As,mP is a s × d (“sketch”) vector. Many

8 Secure Data Retrieval on the Cloud

problems can be solved on the sketch C instead of the long vector P , by designing a
corresponding (sketch) matrix S. For example, if the entries of S are random standard
Gaussian variables, then we can approximate the k-means problem on C by the Johnson-
Lindestrauss Lemma; see [7]. In this paper we use sketches in the context of compressed
sensing, or more precisely, Group Testing [31].

The coreset is a paradigm in the sense that its exact definition, structure and properties
change from paper to paper. The term “coreset" was coined by Agarwal, Har-Peled, and
Varadarajan [1] and originally used for optimization in computational geometry (e.g. [54, 21,
11]). Since then coresets were used in fields such as machine learning (e.g.[44, 10]), numerical
algebra [61], graph theory (e.g. [27]), time series [45, 55, 35] streaming [24, 32, 22, 25] and
pattern recognition [15, 23, 40, 26, 43].
Coresets for Homomorphic Encryption (CHE). In this paper we suggest a new
paradigm that is inspired by the coreset paradigm, but for a very different application
and context. Instead of running the complete secure algorithm on the server side and
encrypted data, the server computes only (encrypted) coresets for the problem at hand
and sends them back to the client. Since the coresets are small, communicating them to
the client, decrypting them, and decoding the desired result from the coreset is relatively
fast and require only little additional time on the client side.

In this paper we introduce the first two CHEs: one for reporting non-zero values in an
array, and one for reducing the ring size from r to O(log r); see Sections 3 and 4 respectively.
These two coresets are then combined to give our secure solution to the report problem;
see Theorem 1. The report coreset uses a sketch matrix to communicate the sparse binary
vector of the reported indices to the client.

The key property that we show in this paper is that computing coresets on the server
side securely (i.e., via polynomials) dramatically reduces its computation by reducing the
degree of the polynomial from at least linear to logarithmic on the input size (CRT coreset)
or even constant (report coreset).

Informally, in this paper a function S is an efficient coreset construction scheme for a
problem if it has the following pair of properties.

(i) S(P) ∈ Rk is a short vector that can be computed efficiently. Usually k = (logm)O(1)

for an input vector P of length m.

(ii) S(P) is a core-set or a “sketch” vector in the sense that the desired information,
in a problem dependent sense, can be extracted efficiently and exactly from S(P),
without having access to (the large) original vector.

Another significant difference from traditional coreset and sketches papers is that the
coresets in this paper are exact in the sense that the data reduction does not introduce
any additional error ε.
Group Testing meets FHE for report coreset. Our report coreset in Protocol 3 uses
a main modern result from the field of Group Testing [31]. To our knowledge, this is the
first application of Group Testing to FHE. The motivation is to return to the client the
very large (m bits) but sparse binary (indicator) vector χ of the desired s indices that
were computed in Line 5 of our report coreset (Protocol 3) by communicating number of
bits that is only poly-logarithmic in m.

Since the vector is encrypted, an efficient algorithm must be realized by a low-degree
polynomial, so simple comparison of each entry to 1 is impossible by such a polynomial.
Instead, Group Testing suggests to extract the set of 1’s entries in χ from a small number
of predefined sums on subsets entries in χ.

In the context of FHE, our Report Coreset multiplies the input vector by a (sketch)
matrix As,m of size k ×m where k is polynomial in s and logm, i.e., we compute few
linear combinations As,m · χ of the entries. Indyk, Ngo and Rudra relatively recently [46]

Adi Akavia, Dan Feldman and Hayim Shaul 9

suggested such a binary matrix As,m, so that our χ vector can be decoded from As,m ·χ in
time that is also polynomial in s and logm on the client side. Unfortunately, unlike χ, the
vector As,m · χ is not a binary vector and may be more efficient to compute over ring with
larger size p > 2. Looking ahead, if isMatch() uses Fermat’s little theorem for making
the equality test, this results in a high-degree polynomial for computing χ in Line 5 of
Protocol 3. In addition, the value s, the sparsity of χ is required to compute As,n but
unknown to the server. These and other challenges are handled by the CRT-coreset, and
the other algorithms of our system.

Figure 2: Server’s running time (y-axis) on a single machine on Amazon’s cloud, for
different vector size (x-axis) of Secure Report (Protocol 3) over encrypted vector. Unlike
the direct method, the running time of the more involved method reduced linearly with
number of machines. Each colored curve represents a test with a vector of different sparsity
s. The red dots represent actual experiments.

Figure 3: Running time (y-axis) of our system using multiple machines (in color) on the
cloud for different number of database records (x-axis). As implied by the analysis, the run-
ning time reduces linearly with number of machines, unlike existing secure implementations
or the direct method that do not use coresets.

10 Secure Data Retrieval on the Cloud

2 Problem Statement and Main Theorem
2.1 The Secure Report Problem
Definition 2 (The Report Problem). Let array = (x1, . . . , xm) be a vector of m (not
necessarily sorted) integers between 0 and r − 1, isMatch() a predicate and ` a full
specification of the predicate defining a match. An algorithm solves the Report problem if it
gets a pair (array, `) as input, and returns the set I of all occurrences in array matching
`, i.e.,

I = { (i, xi) | i ∈ {1, · · · ,m} , isMatch(xi, `) = 1} .

The Secure-Report problem is the Report problem where the input data as well as
the output are replaced by their encryption versions. That is, the input are ciphertexts
JarrayK and J`K which are the encryption of array and ` respectively. The output is a
ciphertext JIK which is the encryption of the desired outcome I.

In the context of our coreset paradigm, the output is a short sketch, named, Report
Coreset, on which the client applies an efficient decoding algorithm to obtain all the
occurrences I where isMatch(array(i), `) = 1.

Definition 3 (Report Coreset). Let k, m, array, ` and I be as in Definition 2. A vector
y ∈ Zk is a k-report coreset for (array, `) if, given only y, we can decode (compute) the
set I of all occurrences of the lookup value ` in array.

The usage scenario is that the server computes JyK = Jf(array, `)K while seeing
encrypted values only, whereas the client decrypts and decodes to obtain the desired
outcome I as in the next formal definition.

2.2 Main Theoretical Result
Based on Definitions 2 we can now define the following problem statement:
Can we securely solve the Report Problem with a server realizing a polynomial
with a degree sub-linear in the size m of the input array? Can we do this via
a sub-linear communication?

In this paper we answer both of these questions affirmably.
In contrast, the existing solutions to the Report Problem as defined in this paper have

a server realizing a polynomial whose degree is Ω(m) or having communication complexity
Ω(m).

Specifically, the following theorem is an immediate corollary of our solution to the
Report Problem; see Section 3:

Theorem 1 (Secure Report). Protocol 3 provides a one round protocol that securely solves
the report problem on array ∈ {0, . . . , r − 1}m with a predicate isMatch() which is a poly-
nomial of degree deg(isMatch), and a predicate specification `, with a server evaluating a
polynomial of degree deg(isMatch), client with running time (|I|·logm)O(1) and communi-
cation complexity O(|I| · logm+ |`|), for I = { (i, xi) | i ∈ {1, . . . , r} , isMatch(xi, `) = 1}.

More applications. While our main motivation and application is secure report, our
main technical result is of independent interest: how to search an array via a polynomial
of low-degree that can be computed in parallel and using only simple operations. We hope
that this result will be used for many other applications in the future such as computations
on GPUs which usually support limited set of operations that includes multiplications
and additions, or low energy IoT (“Internet of Things") devices with limited computation
power and memory (e.g., cannot run software libraries such as Matlab) that may still be
able to compute such polynomials efficiently on board, or alternatively, send the request
to the cloud via their internet connection.

Adi Akavia, Dan Feldman and Hayim Shaul 11

3 The Simple Protocol
In this section we describe a protocol for the report problem. We first start with a simple
version that assumes cnt (the output size) is known, and uses a large enough ring size
p > cnt. In Section 3.1.2 we discuss how to remove the assumption that cnt is known, and
in Section 4 we discuss how the ring size can be reduced.

Reduction to Binary Vector The output of the protocols we describe below is a
binary vector χ = {0, 1}m, such that χi = isMatch(xi, `) (i.e. χi = 1 if xi matches
the predicate and 0 otherwise). By the properties of the sketch matrix Acnt,m, the set
I ′ = { i | i ∈ {1, · · · ,m} , isMatch(xi, `) = 1} . can be reconstructed from Acnt,mχ.

Similarly, we consider the bit representation xi(1), . . . , xi(dlog2 re) of xi (we recall that
xi ∈ {0, . . . , r − 1}) and compute dlog2 re sketches Acnt,mχ(j), where χi(j) = χixi(j),
from which I ′′ = {xi | i ∈ {1, · · · ,m} , isMatch(xi, `) = 1} can be computed.

Putting it all together, we can construct a protocol whose output is

I = { (i, xi) | i ∈ {1, · · · ,m} , isMatch(xi, `) = 1} .

Protocol Overview.
For robustness, we consider three parties: the Cloud who offers storage and computation

services, the Data Source(s) that upload data to the Cloud and the User who performs
queries on the data stored in the Cloud. We provide secure protocols for the Data Source
to upload data to the Cloud and for the User to query it where the cloud is unable to read
the data. We describe: (i) an initialization protocol, (ii) an upload protocol and (iii) the
report protocol where the User submits a filter to the Cloud who then reports efficiently
all data records matching the filter.

We now describe the three protocols in more details.
Initialization The initialization protocol is described in Protocol 1. The User chooses

a ring size p > cnt that ensures the correctness of the output (specifically, Protocol 3,
Line 6). In the simple protocol we assume cnt is known. After setting p appropriately the
User initializes the keys in line 3 and sends the public keys to the Cloud and to the Data
Source (Line 4).

Upload The upload protocol is described in Protocol 2. The Data Source encrypts the
data (Line 2) with the public key and sends it to the Cloud. The encryption can be done
in parallel and may be distributed among many data sources. Notice that the Data Source
does not have the secret key, so even if one Data Source is compromised, the privacy of
data uploaded from other Data Sources or historical data uploaded from the compromised
source is not compromised.

Report In the report protocol (Protocol 3), the User sends a filter given by a
predicate isMatch() and ` to the Cloud and receives a sketch for an indicator vec-
tor (isMatch(x1, `), . . . , isMatch(xm, `)). In the simple case, isMatch() is agreed upon
in advance, in which case the User sends only ` to the Cloud. For example, isMatch(a, `)
can be the equality, i.e. isMatch(a, `) = 1 iff a = `. In the general case, isMatch() can
be determined ad-hoc and be sent by the User to the Cloud together with the parameter
`. The parameter ` is encrypted (Protocol 3, Line 2) before being sent to the Cloud.
The Cloud then applies isMatch on all data records x1, . . . , xm independently in parallel,
the output of which is kept in an indicator vector χ ∈ {0, 1}m (Line 5). In this first
implementation of the protocol we assume cnt (sparsity of χ) is known. Knowing cnt
we construct (in offline) a binary (cnt,m) sketch matrix, Acnt,m. The Cloud computes
Acnt,mχ, which compactifies the m-dimensional vector χ into a O(cnt logm)-dimensional
vector χ′ (Line 6), which is then sent to the User (Line 7). By the properties of Acnt,m
(see Section 1.4) the User can reconstruct χ from χ′ since χ is cnt-sparse (Line 10).

12 Secure Data Retrieval on the Cloud

Protocol 1: Initialization
Inputs:
User: has a security parameter λ and integers cnt < m,

Outputs:
User: gets a key (Pk, Sk,Ek).
Cloud: gets (Pk,Ek).
Data Source: gets (Pk,Ek).

Shared Parameters:
An FHE scheme E = (Gen,Enc,Dec,Eval).

1 User performs:
2 choose a prime p > cnt.
3 generate keys (sk, pk, ek) := Gen(1λ, p).
4 send p, cnt,m, pk, ek to Cloud and to Data Source.

Protocol 2: Upload
Inputs:
Data Source: a vector array = (x1, . . . , xm).

Outputs:
Cloud: gets m and the encrypted vector

JarrayK = (Jx1K, . . . , JxmK).

1 Data Source performs:
2 compute JxiK := Enc(xi, pk), for i = 1, . . . ,m
3 send array to Cloud.

3.1 Implementation Details
3.1.1 Implementations of isMatch

Implementing isMatch as equality.
As a first naive implementation of isMatch(a, b) we consider the equality test where

a, b ≤ r are given as bits, i.e. (a1, a2, . . .) are the bits of a, where each ai ∈ {0, 1}, the i-th
bit of a, is encrypted in a different ciphertext and similarly (b1, b2, . . .) are the bits of b. In
that case, it can be given as a simple polynomial

isMatch(a, b) = IsEqual(a, b) =
∏

(1− (ai − bi)2),

The degree of this polynomial is 2 log2 r and it can be realized with 2 log2 r − 1 MULT
operations. We note that a simpler polynomial exists for equality testing over bits,
IsEqual2(a, b) =

∏
(ai + bi + 1) mod 2. Implementing this polynomial in an arithmetic

circuit is efficient only when the circuit is over a ring of size p = 2 and the modulo operation
is inherent from the ring size. However, in many implementations the circuit is designed
over a larger ring size p > 2. Specifically, computing Jχ′K = Acnt,mJχK is significantly more
efficient when p > 2. In that case, it makes sense to keep a (similarly b) as a base p number
given by its digits. a = (a1, a2, . . .), where ai ∈ {0, . . . , p− 1} is the i-th digit in base p.
In that case, assuming p is prime and using Fermat’s little theorem we can set

isMatch(a, b) =
∏

(1− (ai − bi)p−1) mod p,

which has a slightly better degree log r
log p (p − 1) and can be realized with O(log r) MULT

operations.

Adi Akavia, Dan Feldman and Hayim Shaul 13

Protocol 3: Secure Report
Inputs:
User has the key (sk, pk), a value ` and a predicate

isMatch.
Cloud has the public and evaluation keys pk, ek,

and an encrypted array JarrayK.
Shared Parameters:
An FHE scheme E = (Gen,Enc,Dec,Eval),
Integers m, p > cnt.

Output:
The User output is an indicator vector χ of
indices in array matching `.

1 The User performs:
2 compute J`K := Enc(`, pk).
3 send J`K to the Cloud.
4 The Cloud performs:
5 compute Jχ(i)K := isMatch(JxiK, J`K), in parallel.

/* Acnt is binary (cnt,m)-sketch matrix. */
6 compute Jχ′K := Acnt,mJχK.
7 send Jχ′K to User.
8 The User performs:
9 decrypt χ′ := Dec(Jχ′K, sk).

10 decode χ := Decode(χ′).

Implementing non-trivial isMatch filters. The isMatch(a, b) can have non-trivial
implementations, for example, a can be a vector, b a range and isMatch(a, b) = 1 if a ∈ b.
Thus Protocol 3 can report elements matching any filter. The depth of the circuit realized
by the Cloud in Protocol 3 is asymptotically equal to the depth of the circuit realizing
isMatch, since all instances of isMatch are realized in parallel.

3.1.2 Computing cnt

In Protocol 3 we assumed cnt, the number of items in array matching ` is known. We
now show how to remove this assumption. We first assume that cnt can be shared with
the cloud. In that case, Protocol 4 can be run as a preliminary step, which computes cnt.
The value cnt can then be shared with the Cloud and Protocol 3 then continues as before,
increasing the number of rounds in the solution from 1 to 2.

Protocol 5 deals with the case where cnt cannot be shared with the Cloud. In this
case, the Cloud sets s = 20, 21, . . . ,m, computes log2 m sketches and sends them to the
client. Although the Cloud has communication complexity of O(m), the user can abort
the protocol after receiving only O(cnt) bits.

4 Protocol with Reduced Ring Size
The ring size required by Protocol 3 and Protocol 4 as described in Section 3 is p > s to
allow a correct computation of As · χ (Line 6 in Protocol 3 and Line 6 in Protocol 4).

In many cases, the Chinese Remainder Theorem (CRT) can be used to replace a large
ring size with many smaller ones. Unfortunately, CRT cannot always be used. Specifically,
it cannot be used if the isMatch circuit implements an equality test based on Fermat’s

14 Secure Data Retrieval on the Cloud

Protocol 4: Secure Count
Inputs:
User has the key (sk, pk), a predicate

isMatch() and its specification `.
Cloud has the public and evaluation keys

pk, ek, and an encrypted array JarrayK.
Shared Parameters:
An FHE scheme E = (Gen,Enc,Dec,Eval),

the number m, and a prime p > m.
Output:
The output of User is a number

cnt = | {i | isMatch(array(i), `) = 1} |.

1 The User performs:
2 compute J`K := Enc(`, pk).
3 send J`K to the Cloud.
4 The Cloud performs:
5 compute Jχ(i)K := isMatch(Jarray(i)K, J`K), in parallel.
6 compute JcntK :=

∑
Jχ(i)K.

7 send JcntK to User.
8 The User performs:
9 decrypts cnt := Dec(JcntK, sk).

Little Theorem (FLT) (which is a useful and popular [2] primitive). In a nut shell, a FLT-
based-equality is realized by IsEqual(z) = zp−1 mod p which is a different polynomial for
each moduli p, whereas CRT works when computing the same polynomial for all moduli.

In this section we consider modifications of Protocol 3 and Protocol 4 that use many
small ring sizes with conjunction of a FLT-based isMatch. For simplicity we consider the
case where isMatch(a, b) is a simple equality test a = b.

Using the Chinese Remainder Theorem (CRT) with an equality test that does not
involve FLT we run Protocol 4 with κ = logm

log logm different ring sizes logm < p1 < . . . < pκ.
The outputs of the κ copies of Protocol 4 are (cnt mod p1), . . . , (cnt mod pκ), from which
cnt can be reconstructed. Accordingly, Protocol 1 should be changed to initialize κ keys,
and Protocol 2 should encode array with κ keys. In addition Protocol 3 should be run κ
times, each having an appropriate version of the isMatch oracle.

An equality test that does not involve FLT, can be for example bitwise comparison,
isMatch(a, b) = 1 iff a = b, where a, b < M and ai (resp. bi) is the i-th bit in the binary
representation of a (resp. b). In that case, we can take isMatch(a, b) = IsEqual(a, b) =∏

1 − (ai − bi)2 which is a 2 logM degree polynomial and is evaluated correctly over
all moduli pi. The communication complexity of the upload protocol, then becomes
O(m logm logM

log logm) since it needs to encrypt the m values of array as logM bits with logm
log logm

keys.
Motivated to reduced the communication complexity we use a slightly different repre-

sentation for array.

Definition 4 (CRT Representation). Let a < M be an integer, µ = logM
log logM and logM <

q1 < . . . < qµ be primes. The CRT representation of a is (a)q1...qµ = (a mod q1, . . . , a
mod qµ). When q1, . . . , qµ are obvious from the context we simply write a.

Lemma 1. Given two integers 0 ≤ a, b ≤ M and primes logM < q1 < . . . < qµ, where
µ = logM

log logM , then a = b iff (a = b) mod qj for all j.

Adi Akavia, Dan Feldman and Hayim Shaul 15

Protocol 5: Secure Report where cnt is secret
Inputs:
User has the key (sk, pk), a value `, a bivariate function isMatch,

s.t. isMatch(x, y) = 1 if x = y and 0 otherwise
Cloud has the public and evaluation keys pk, ek,

and an encrypted array JarrayK.
Parameters, Outputs: Same as Protocol 5

1 The User performs:
2 compute J`K := Enc(`, pk).
3 send J`K to the Cloud.
4 The Cloud performs:
5 compute Jχ(i)K := isMatch(Jarray(i)K, J`K), in parallel.
6 for each s := 21, 22, . . . ,m do

/* As is binary (s,m)-sketch matrix */
7 compute Jχ′sK := AsJχK. send Jχ′sK to User.
8 The User performs:
9 ignore As where s < cnt or s > 2cnt

10 decrypt χ′s := Dec(JsK, sk), where cnt < s < 2cnt

The proof follows immediately from the Chinese Remainder Theorem since
∏
qj > M .

For simplicity, assume first that qj < pi for any i, j, this can always be made true
since we have only a lower bound in choosing qj and pi. The isMatch oracle, can be
implemented using Fermat’s Little Theorem: fpi(a, b) =

∏
(1 − (aj − bj)pi−1), where a

and b are the CRT-representation of a and b respectively. Then fpi is a polynomial of
degree O(logN logM).

To address cases where qj > pi we represent values of array mod qj as multi-digits
numbers in base pi, each number having at most O(log qj

log pi) = O(log logM
log logN) digits.

We therefore describe in full a more economic (in communication complexity) report
protocol for the case where isMatch is the equality implemented using FLT.

Protocol 6: Initialization
Inputs:
User: has a security parameter λ and an integer m,

where we assume w.l.o.g. m is a power of two
Outputs:
User: gets κ = logm

log logm keys
(Pk1, Sk1, Ek1), . . . , (Pkκ, Skκ, Ekκ).

Cloud: gets (Pk1, Ek1), . . . , (Pkκ, Ekκ).
Data Source: gets (Pk1, Ek1), . . . , (Pkκ, Ekκ).

Shared Parameters:
An FHE scheme E = (Gen,Enc,Dec,Eval).

1 User performs:
2 choose µ primes logm < q1 < . . . < qµ.
3 choose κ primes qµ < p1 < . . . < pκ.
4 ḡenerate κ keys (sk1, pk1, ek1) := Gen(1λ, p1) . . . (skκ, pkκ, ekκ) := Gen(1λ, pκ).
5 send m, q1, . . . , qµ, p1, . . . , pκ, (pk1, ek1), . . . , (pkκ, ekκ) to Cloud and to Data

Source.

16 Secure Data Retrieval on the Cloud

Protocol 7: Secure Upload
Inputs:
Data Source: a vector array = (array(1), . . . , array(m)),

where we assume w.l.o.g. m is a power of two
Outputs:
Cloud: gets m and κ× µ encrypted vectors
JarrayjKi = (Jarray(1) mod qjKi, . . . , Jarray(m) mod qjKi),
for 1 ≤ i ≤ κ and 1 ≤ jµ.

1 Data Source performs:
2 for every 1 ≤ i ≤ κ and every 1 ≤ j ≤ µ do
3 compute Jarray(k)jKi := Enc(array(k) mod qj , pki), for k = 1, . . . ,m
4 send JarrayjKi to Cloud.

4.1 Protocol Overview
Protocol 8 is based on Protocol 3. Unlike the latter, this protocol supports only filter oracles
isMatch that implements equality tests using FLT. The protocol starts by encrypting
array(i) mod qi, for different primes qi and using different keys with different ring sizes
(Line 3). The multiplicity of moduli and ring sizes, lets the protocol determine whether
array(i) = ` by comparing many (significantly smaller) moduli (by using f). This
comparison is done for all keys, in their respective ring sizes. Then the protocol computes
the report sketch using different keys with different ring sizes (Line 7).

The sketch Jχ′Ki is computed with respect to the i-th key and modulo its ring size pi.
By the CRT, given χ mod pi, for i = 1, . . . , κ, we can reconstruct χ′ (as done in Line 11).
The indicator vector χ can be reconstructed from χ′ as in Protocol 3.

Note, that the CRT-coreset described here is a general framework to compute sketches
with small ring sizes while still using FLT. The two sketches we use here: counting and
reporting are obtained by replacing Line 7 with the appropriate computation.

5 System & Experimental Results
In this section we describe experiments on the secure report that we implemented based
on our algorithms. To our knowledge, this is the first implementation of such a secure
report system. For example, it can report the locations of 1’s in a 10-sparse vector of
size 3 · 109 = 3, 000, 000, 000 entries in less than one minute by using a single machine
on Amazon EC2 cloud. The system is fully open sourced, and all our experiments are
reproducible. We hope to extend and improve the system in future papers together with
both the theoretical and practical community.

5.1 The System

System Overview. The system maintains an encrypted database that is stored on
Amazon’s AWS cloud. The system gets from the client an encrypted lookup value ` to
search for, and a column name array in a database table of length m. The encryption is
computed on the client’s side using a secret key that is unknown to the server. The client
can send the request through a web-browser, that can be run e.g. from a smart-phone
or a laptop. The system then runs our secure report coreset algorithm on the cloud, and
returns a report coreset for (array, `). The web browser then decrypts this coreset on
the client’s machine and uses it to compute the solution to the report query, which is the

Adi Akavia, Dan Feldman and Hayim Shaul 17

Protocol 8: Secure Report
Inputs:
User has κ keys (sk1, pk1) . . . (skκ, pkκ), a value `

and a function isMatch as in Protocol 3
Cloud has the public and evaluation keys

(pk1, ek1), . . . (pkκ, ekκ),
and κ× µ copies of array
Jarray mod qjKpi , for 1 ≤ i ≤ κ and 1 ≤ j ≤ µ.

Shared Parameters:
An FHE scheme E = (Gen,Enc,Dec,Eval),
the number m, primes logm < p1 < . . . < pκ and
logm < q1 < . . . < qµ.

Output:
The User output is an indicator vector χ
of indices in array matching `.

Assumption:
A bound |χ| < s is known to all parties.

1 The User performs:
2 compute J` mod qjKi := Enc(`, pki), for all 1 ≤ i ≤ κ and 1 ≤ j ≤ µ.
3 send J` mod qjKi to the Cloud.
4 The Cloud performs:
5 compute Jχ(i)Ki := f({Jarray(k mod qj)Kpi}

µ
j=1 , {J` mod qjKpi}

µ
j=1), in parallel.

6 compute Jχ′Ki := AsJχK. // As is binary (s,m)-sketch matrix
7 .
8 send Jχ′Ki to User.
9 The User performs:

10 decrypt χ′i := Dec(Jχ′K, skj).
11 CRT decode χ′ from χ′1, . . . , χ

′
µ

12 decode χ := Decode(χ′).

indices i1, . . . , is in array that contains `. Database updates can be maintained between
search calls, and support multiple users that share the same security key.
Hardware. Our system is generic but in this section we evaluate it on Amazon’s AWS
cloud. We use one of the standard suggested grids of EC2 x1.32xlarge servers, each with
64 2.4 GHz Intel Xeon E5-2676 v3 (Haswell) cores and 1,952 GigaByte of RAM.
Open Software and Security. The algorithms were implemented in C + +. HELib
library [41] was used for the FHE commands. The source of our system is open under the
GNU v3 license and can be found in [3]. For our experiments below we use a security key
of 80 bits of security.

5.2 Experimental Results
In this sub-section we describe our preliminary experiments with our system and explain
the results. Due to lack of space we omit more results and description that can be found
in the fuller version [4].
Data. We ran the system on a lookup value ` = 1 in a array of m integers of range r = m.
The vector was all zeroes except for s random indices, and different values for m and s
were used. As expected, the actual values behind the encrypted records had no effect on
the running times.

18 Secure Data Retrieval on the Cloud

Protocol 9: Simple Secure Count
Inputs: same as in Protocol 8
Output:

The output of User is a number cnt = | {i | isMatch(array(i), `) = 1} |.

1 The User performs:
2 compute J` mod qjKi := Enc(`, pki), for all 1 ≤ i ≤ κ and 1 ≤ j ≤ µ.
3 send J` mod qjKi to the Cloud.
4 The Cloud performs:
5 compute Jχ(i)Ki := f({Jarray(k mod qj)Kpi}

µ
j=1 , {J` mod qjKpi}

µ
j=1), in parallel.

6 compute JsKi :=
∑
kJχ(k)Ki.

7 send JsKi to User.
8 The User performs:
9 decrypts si := Dec(JsKi, ski).

10 decode s := CrtDecode(s1, . . . , sκ).

The Experiment. We ran Algorithm 3 for database table columns ranging from m = 10
to
m = 3, 000, 000, 000 = 3 · 109 records, and s ∈ {10, 20, 40}.
Results. Our experimental results for a single machine on the cloud are shown as the
circle points in Fig 2. The table of exact values appears in the full version [4].

The client’s decoding time was negligible in all the experiments, so the server’s time
equals to the overall running time. For example, the graph shows that a single machine
can report in about 2 minutes all 1’s in a 20-sparse column of 3,000,000,000 binary entries.
Comparison to naive approach. Our theoretical results proves that the running time
of our new algorithm is only poly-logarithmic in the number m of entries compared to
the naive approach which is polynomial in m. However, it assumes that both our and the
naive algorithm may use m machines in parallel, i.e., a machine for each record. The goal
of our experiment was to show a significant time reduction even using a single machine on
the cloud where a running time that is linear in m is expected.

The graph in Fig. 2 is log scaled so a linear curve shows a polynomial relation, and its
slope is the degree of the polynomial. Our experiments indeed show that our algorithm is
linear in m as expected. The naive algorithm perform worse, both on small number of
entries (the ratio is approximately 1000), but also asymptotically: The slope of the naive
approach is about 1.5, indicating a running time of O(m1.5) (as oppose to our O(m)). The
main reason we see from the profiling is that, unlike the naive algorithm, our algorithm
does not use multiplications beyond the reduction to binary indicator vector, since we
implemented the binary sketch matrix using sum of subsets of entries.

A Fundamental Definitions
Definition 5 (Universal constant). A function, data
structure or a parameter in an algorithm is a universal (global) constant if it is independent
of the content of the corresponding input data. It may still depend on the size of the data.

For example, a universal constant may depend on the input size such as r and m in the
Report Problem, but not on the dynamic input values such as input array or lookup value
`. We do not need to compute a universal constant as part of our main algorithm. Instead,
we can compute it only once and, e.g., upload it to a public web-page. We can thus ignore

Adi Akavia, Dan Feldman and Hayim Shaul 19

Table 2: Server’s running time of Report Coreset (Algorithm 3) as measured on a single
machine on Amazon’s cloud for different database array size (left column) and different
sparsity over encrypted database. The 2nd, 3rd and 4th columns show the time in minute
to compute report with the naive algorithm with s = 10, 20 and 40. The 5th, 6th and 7th
columns show the time in minute to compute report with our algorithm with s = 10, 20
and 40.

m (vector size) Naive (min) Our Alg. (min)
s = 10 s = 20 s = 40 s = 10 s = 20 s = 40

89,600 1.00 1.99 3.95 0.00 0.00 0.00
192,000 1.68 3.40 6.76 0.00 0.00 0.00
396,800 5.45 11.07 22.17 0.00 0.00 0.00
806,400 16.68 33.63 67.59 0.00 0.00 0.00
1,625,600 49.41 99.81 198.64 0.00 0.00 0.00
3,264,000 195.22 392.71 689.37 0.00 0.00 0.00
6,540,800 564.37 1,133.61 2,281.18 0.00 0.00 0.01
13,094,400 0.00 0.01 0.02
26,201,600 0.01 0.02 0.04
52,416,000 0.01 0.04 0.07
104,844,800 0.02 0.07 0.15
209,702,400 0.04 0.15 0.29
419,417,600 0.08 0.29 0.58
838,848,000 0.17 0.62 1.24
1,677,708,800 0.34 1.22 2.45
3,355,430,400 0.66 2.36 4.72

its construction time in our main algorithm, by passing the constant or a pointer to this
constant as an additional input.

Definition 6 (Ring Zp). The ring Zp is the set
{0, · · · , p− 1} equipped with multiplication (·) and addition (+) operations modulo p, i.e.,
a · b =

(
(a · b) mod p

)
and a+ b =

(
(a+ b) mod p

)
for every a, b ∈ Zp.

Theorem 2 (Follows from CRT [28]). Letm, k ≥ 1 be integers such that k ≥ log2 m/ log2 log2 m.
Let q = (q(1), · · · , q(k)) be a vector of k distinct primes larger than log2 m. Then there is a
unique integer Alg(m) such that Alg(j) = Alg(m) mod q(j) for every j ∈ [k]. Moreover,
Alg(m) can be decoded (computed) from y = (Alg(q(1)), · · · , Alg(q(k))) in O(k) time, after
pre-processing of kO(1) time for computing universal constants.

References
[1] P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan. Geometric approximation via

coresets. Combinatorial and computational geometry, 52:1–30, 2005.

[2] A. Akavia, D. Feldman, and H. Shaul. Secure search via sketching for homomor-
phic encryption. In Proceedings of the 25th ACM Conference on Computer and
Communications Security. ACM, 2018.

[3] Anonymous. ReportLib: Open library for FHE search, with an example system, will
be published upon acceptance or reviewer’s request., 2018.

[4] Anonymous. Secure database queries on the cloud: Homomorphic encryption meets
coresets, full version., 2018.

20 Secure Data Retrieval on the Cloud

[5] D. Boneh, C. Gentry, S. Halevi, F. Wang, and D. J. Wu. Private database queries
using somewhat homomorphic encryption. In International Conference on Applied
Cryptography and Network Security, pages 102–118. Springer, 2013.

[6] C. Bösch, P. Hartel, W. Jonker, and A. Peter. A survey of provably secure searchable
encryption. ACM Computing Surveys (CSUR), 47(2):18, 2015.

[7] C. Boutsidis, A. Zouzias, and P. Drineas. Random projections for k-means clustering.
In Advances in Neural Information Processing Systems, pages 298–306, 2010.

[8] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (leveled) fully homomorphic en-
cryption without bootstrapping. In Proceedings of the 3rd Innovations in Theoretical
Computer Science Conference, ITCS ’12, pages 309–325, New York, NY, USA, 2012.
ACM.

[9] Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic encryption from
(standard) LWE. In IEEE 52nd Annual Symposium on Foundations of Computer
Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pages 97–106,
2011.

[10] V. Braverman, G. Frahling, H. Lang, C. Sohler, and L. F. Yang. Clustering high
dimensional dynamic data streams. arXiv preprint arXiv:1706.03887, 2017.

[11] V. Braverman, A. Meyerson, R. Ostrovsky, A. Roytman, M. Shindler, and B. Tagiku.
Streaming k-means on well-clusterable data. In Proceedings of the twenty-second
annual ACM-SIAM symposium on Discrete Algorithms, pages 26–40. Society for
Industrial and Applied Mathematics, 2011.

[12] G. S. Çetin, W. Dai, Y. Doröz, W. J. Martin, and B. Sunar. Blind web search: How
far are we from a privacy preserving search engine? IACR Cryptology ePrint Archive,
2016:801, 2016.

[13] M. Chase and S. Kamara. Structured encryption and controlled disclosure. In
International Conference on the Theory and Application of Cryptology and Information
Security, pages 577–594. Springer, 2010.

[14] H. Chen, K. Laine, and P. Rindal. Fast private set intersection from homomorphic
encryption. IACR Cryptology ePrint Archive, 2017:299, 2017.

[15] J. Chen and Q. Zhang. Bias-aware sketches. Proceedings of the VLDB Endowment,
10(9):961–972, 2017.

[16] J. H. Cheon, M. Kim, and M. Kim. Optimized search-and-compute circuits and
their application to query evaluation on encrypted data. IEEE Trans. Information
Forensics and Security, 11(1):188–199, 2016.

[17] J. H. Cheon, M. Kim, and K. E. Lauter. Homomorphic computation of edit distance.
In Financial Cryptography Workshops, pages 194–212, 2015.

[18] J. H. Cheon, M. Kim, and K. E. Lauter. Homomorphic computation of edit distance.
In Financial Cryptography Workshops, pages 194–212, 2015.

[19] B. Chor, N. Gilboa, and M. Naor. Private information retrieval by keywords, 1997.

[20] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information retrieval.
In Foundations of Computer Science, 1995. Proceedings., 36th Annual Symposium on,
pages 41–50. IEEE, 1995.

Adi Akavia, Dan Feldman and Hayim Shaul 21

[21] K. L. Clarkson. Coresets, sparse greedy approximation, and the frank-wolfe algorithm.
ACM Transactions on Algorithms (TALG), 6(4):63, 2010.

[22] E. Cohen and H. Kaplan. Tighter estimation using bottom k sketches. Proceedings of
the VLDB Endowment, 1(1):213–224, 2008.

[23] R. Cole, D. Shasha, and X. Zhao. Fast window correlations over uncooperative time
series. In Proceedings of the eleventh ACM SIGKDD international conference on
Knowledge discovery in data mining, pages 743–749. ACM, 2005.

[24] G. Cormode and M. Garofalakis. Sketching streams through the net: Distributed
approximate query tracking. In Proceedings of the 31st international conference on
Very large data bases, pages 13–24. VLDB Endowment, 2005.

[25] G. Cormode and M. Garofalakis. Sketching probabilistic data streams. In Proceedings
of the 2007 ACM SIGMOD international conference on Management of data, pages
281–292. ACM, 2007.

[26] G. Cormode, M. Garofalakis, P. J. Haas, and C. Jermaine. Synopses for massive
data: Samples, histograms, wavelets, sketches. Foundations and Trends in Databases,
4(1–3):1–294, 2012.

[27] A. Czumaj, C. Lammersen, M. Monemizadeh, and C. Sohler. (1+ ε)-approximation
for facility location in data streams. In Proceedings of the twenty-fourth annual ACM-
SIAM symposium on Discrete algorithms, pages 1710–1728. Society for Industrial and
Applied Mathematics, 2013.

[28] C. Ding, D. Pei, and A. Salomaa. Chinese remainder theorem: applications in
computing, coding, cryptography. World Scientific, 1996.

[29] Y. Doröz, B. Sunar, and G. Hammouri. Bandwidth efficient PIR from NTRU. In
Financial Cryptography and Data Security - FC 2014 Workshops, BITCOIN and
WAHC 2014, Christ Church, Barbados, March 7, 2014, Revised Selected Papers, pages
195–207, 2014.

[30] N. Dowlin, R. Gilad-Bachrach, K. Laine, K. Lauter, M. Naehrig, and J. Wernsing.
Cryptonets: Applying neural networks to encrypted data with high throughput
and accuracy. In Proceedings of the 33rd International Conference on International
Conference on Machine Learning - Volume 48, ICML’16, pages 201–210. JMLR.org,
2016.

[31] D. Du, F. K. Hwang, and F. Hwang. Combinatorial group testing and its applications,
volume 12. World Scientific, 2000.

[32] M. Garofalakis, D. Keren, and V. Samoladas. Sketch-based geometric monitoring
of distributed stream queries. Proceedings of the VLDB Endowment, 6(10):937–948,
2013.

[33] C. Gentry. A Fully Homomorphic Encryption Scheme. PhD thesis, Stanford University,
Stanford, CA, USA, 2009. AAI3382729.

[34] C. Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of
the Forty-first Annual ACM Symposium on Theory of Computing, STOC ’09, pages
169–178, New York, NY, USA, 2009. ACM.

[35] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss. Surfing wavelets on
streams: One-pass summaries for approximate aggregate queries. In VLDB, volume 1,
pages 79–88, 2001.

22 Secure Data Retrieval on the Cloud

[36] O. Goldreich. Towards a theory of software protection and simulation by oblivious
rams. In Proceedings of the Nineteenth Annual ACM Symposium on Theory of
Computing, STOC ’87, pages 182–194, New York, NY, USA, 1987. ACM.

[37] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In
Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing,
STOC ’87, pages 218–229, New York, NY, USA, 1987. ACM.

[38] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In
Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing,
STOC ’87, pages 218–229, New York, NY, USA, 1987. ACM.

[39] T. Graepel, K. Lauter, and M. Naehrig. Ml confidential: Machine learning on encrypted
data. In Proceedings of the 15th International Conference on Information Security
and Cryptology, ICISC’12, pages 1–21, Berlin, Heidelberg, 2013. Springer-Verlag.

[40] S. Guha and A. McGregor. Graph synopses, sketches, and streams: A survey.
Proceedings of the VLDB Endowment, 5(12):2030–2031, 2012.

[41] S. Halevi. Helib - an implementation of homomorphic encryption. https://github.
com/shaih/HElib/, 2013.

[42] S. Halevi and V. Shoup. Algorithms in helib. In 34rd Annual International Cryptology
Conference, CRYPTO 2014. Springer Verlag, 2014.

[43] H. Huang and S. P. Kasiviswanathan. Streaming anomaly detection using randomized
matrix sketching. Proceedings of the VLDB Endowment, 9(3):192–203, 2015.

[44] J. Huggins, T. Campbell, and T. Broderick. Coresets for scalable bayesian logistic
regression. In Advances in Neural Information Processing Systems, pages 4080–4088,
2016.

[45] P. Indyk, N. Koudas, and S. Muthukrishnan. Identifying representative trends in
massive time series data sets using sketches. In VLDB, pages 363–372, 2000.

[46] P. Indyk, H. Q. Ngo, and A. Rudra. Efficiently decodable non-adaptive group
testing. In Proceedings of the twenty-first annual ACM-SIAM symposium on Discrete
Algorithms, pages 1126–1142. SIAM, 2010.

[47] M. Kim, H. T. Lee, S. Ling, S. Q. Ren, B. H. M. Tan, and H. Wang. Better security
for queries on encrypted databases. IACR Cryptology ePrint Archive, 2016:470, 2016.

[48] M. Kim, H. T. Lee, S. Ling, B. H. M. Tan, and H. Wang. Private compound wildcard
queries using fully homomorphic encryption. IEEE Transactions on Dependable and
Secure Computing, 2017.

[49] K. E. Lauter, A. López-Alt, and M. Naehrig. Private computation on encrypted
genomic data. LATINCRYPT, 8895:3–27, 2014.

[50] K. E. Lauter, A. López-Alt, and M. Naehrig. Private computation on encrypted
genomic data. IACR Cryptology ePrint Archive, 2015:133, 2015.

[51] W. Lu, S. Kawasaki, and J. Sakuma. Using fully homomorphic encryption for
statistical analysis of categorical, ordinal and numerical data. IACR Cryptology ePrint
Archive, 2016:1163, 2016.

[52] M. Naehrig, K. Lauter, and V. Vaikuntanathan. Can homomorphic encryption be
practical? In Proceedings of the 3rd ACM Workshop on Cloud Computing Security
Workshop, CCSW ’11, pages 113–124, New York, NY, USA, 2011. ACM.

https://github.com/shaih/HElib/
https://github.com/shaih/HElib/

Adi Akavia, Dan Feldman and Hayim Shaul 23

[53] A. Name. CHELib: Open library for coresets in fhe, 2018.

[54] J. M. Phillips. Coresets and sketches. arXiv preprint arXiv:1601.00617, 2016.

[55] G. Reeves, J. Liu, S. Nath, and F. Zhao. Managing massive time series streams with
multi-scale compressed trickles. Proceedings of the VLDB Endowment, 2(1):97–108,
2009.

[56] R. L. Rivest, L. Adleman, and M. L. Dertouzos. On data banks and privacy homo-
morphisms. Foundations of Secure Computation, Academia Press, pages 169–179,
1978.

[57] S. S. Roy, F. Vercauteren, J. Vliegen, and I. Verbauwhede. Hardware assisted fully
homomorphic function evaluation and encrypted search. IEEE Transactions on
Computers, 2017.

[58] D. X. Song, D. Wagner, and A. Perrig. Practical techniques for searches on encrypted
data. In Security and Privacy, 2000. S&P 2000. Proceedings. 2000 IEEE Symposium
on, pages 44–55. IEEE, 2000.

[59] H. Tang, X. Jiang, X. Wang, S. Wang, H. Sofia, D. Fox, K. Lauter, B. Malin, A. Telenti,
L. Xiong, and L. Ohno-Machado. Protecting genomic data analytics in the cloud:
state of the art and opportunities. BMC Medical Genomics, 9(1):63, Oct 2016.

[60] F. Wang, C. Yun, S. Goldwasser, V. Vaikuntanathan, and M. Zaharia. Splinter:
Practical private queries on public data. In NSDI, pages 299–313. USENIX Association,
2017.

[61] D. P. Woodruff et al. Sketching as a tool for numerical linear algebra. Foundations
and Trends R© in Theoretical Computer Science, 10(1–2):1–157, 2014.

[62] A. C.-C. Yao. How to generate and exchange secrets. In Proceedings of the 27th
Annual Symposium on Foundations of Computer Science, SFCS ’86, pages 162–167,
Washington, DC, USA, 1986. IEEE Computer Society.

[63] M. Yasuda, T. Shimoyama, J. Kogure, K. Yokoyama, and T. Koshiba. Secure pattern
matching using somewhat homomorphic encryption. In Proceedings of the 2013 ACM
Workshop on Cloud Computing Security Workshop, CCSW ’13, pages 65–76, New
York, NY, USA, 2013. ACM.

[64] M. Yasuda, T. Shimoyama, J. Kogure, K. Yokoyama, and T. Koshiba. New packing
method in somewhat homomorphic encryption and its applications. Sec. and Commun.
Netw., 8(13):2194–2213, Sept. 2015.

	Introduction
	Secure Report Problem Statement
	Related Works
	Our Contribution
	New Paradigm: Coresets for Homomorphic Encryption (CHE)

	Problem Statement and Main Theorem
	The Secure Report Problem
	Main Theoretical Result

	The Simple Protocol
	Implementation Details

	Protocol with Reduced Ring Size
	Protocol Overview

	System & Experimental Results
	The System
	Experimental Results

	Fundamental Definitions

